Three-way comparison between OMI and PARASOL cloud pressure products
نویسندگان
چکیده
[1] The cloud pressures determined by three different algorithms, operating on reflectances measured by two spaceborne instruments in the ‘‘A’’ train, are compared with each other. The retrieval algorithms are based on absorption in the oxygen A-band near 765 nm, absorption by a collision induced absorption in oxygen near 477 nm, and the filling in of Fraunhofer lines by rotational Raman scattering near 350 nm. A Lambertian reflector as cloud model is assumed in the retrievals. The first algorithm operates on data collected by the POLDER instrument on board PARASOL, while the latter two operate on data from the OMI instrument on board EOS-Aura. The satellites sample the same air mass within about 15 min. We compare the retrieval algorithms using synthetic spectra to give the comparison realistic baseline expectations. It appears that these cloud pressures are not the pressure of the cloud top, but of a level inside the cloud. This is corroborated by comparisons with MODIS and CloudSat data: while the top of the cloud is seen by MODIS using emitted IR radiation, both OMI and PARASOL algorithms retrieve a pressure near the midlevel of the cloud. The three cloud pressure products are compared using 1 month of data. The cloud pressures are found to show a similar behavior, with correlation coefficients larger than 0.85 between the data sets for high effective cloud fractions. The average differences in the cloud pressure are small, between 2 and 45 hPa, for the whole data set, with an RMS difference of 65 to 93 hPa. This falls within the science requirement for the OMI cloud pressure to have an accuracy of 100 hPa. For small to medium effective cloud fractions, the cloud pressure distribution found by PARASOL is very similar to that found by OMI using the O2–O2 absorption. Somewhat larger differences are found for very high effective cloud fractions.
منابع مشابه
First results from a rotational Raman scattering cloud algorithm applied to the Suomi National Polar-orbiting Partnership (NPP) Ozone Mapping and Profiler Suite (OMPS) Nadir Mapper
This paper reports initial results from an Ozone Mapping and Profiler Suite (OMPS) Nadir Mapper cloud pressure and cloud fraction algorithm. The OMPS cloud products are intended for use in OMPS ozone or other tracegas algorithms. We developed the OMPS cloud products using a heritage algorithm developed for the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite. The cloud pressure algori...
متن کاملValidation Results from the Joint Esa Knmi Nivr Calibration and Validation Announcement of Opportunity for the Ozone Monitoring Instrument
In this paper we report on the progress achieved within the framework of the joint ESA KNMI NIVR Calibration and Validation Announcement of Opportunity for the Ozone Monitoring Instrument aboard the NASA EOS Aura satellite. This OMI AO effort has rendered a wealth of validation results and scientific insights. Herein this contribution only a selection of the validation results is presented. OZO...
متن کاملA neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements
The discrimination of cloudy from cloud-free pixels is required in almost any estimate of a parameter retrieved from satellite data in the ultraviolet (UV), visible (VIS) or infrared (IR) parts of the electromagnetic spectrum. In this paper we report on the development of a neural network (NN) algorithm to estimate cloud fractions using radiances measured at the top of the atmosphere with the N...
متن کاملCloud manufacturing system
Cloud manufacturing is defined as a relationship between the consumer and a flexible array of production services, managed by an intervening architecture that can match service providers to product and manufacturing processes Cloud manufacturing definitions typically make explicit or imply three groups of actors: consumers, who request and use cloud manufacturing processes; application provider...
متن کاملComparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain) – Part 1: Analysis of parameter influence
The main objective of this study is to compare the erythemal UV irradiance (UVER) and spectral UV irradiances (at 305, 310 and 324 nm) from the Ozone Monitoring Instrument (OMI) onboard NASA EOS/Aura polar sun-synchronous satellite (launched in July 2004, local equator crossing time 01:45 p.m.) with ground-based measurements from the Brewer spectrophotometer #150 located at El Arenosillo (South...
متن کامل